Advanced Septic System Nitrogen Sensor Challenge

Informational Webinar

Monday, July 16, 2018, 9:30 AM - 11:00 AM Eastern Time

Agenda

- Goal of the Advanced Septic System Nitrogen Sensor Challenge
- Who's Who: Stakeholders and Technical Panel
- www.verifiglobal.com
 - Testing Application
 - Test/Quality Assurance Plan (T/QAP)
 - ISO Environmental Technology Verification (ETV)14034
- Purpose of the Test/Quality Assurance Plan (T/QAP)
- Overview of Testing Facility (MASSTC)
- Sensor Test Cell
- Requirements of Sensors
- Experimental Design and Performance Goals for Sensors
- Verification and ISO 14034
- Flowchart of Upcoming Activities and Timeline of Challenge
- Testing Application
- Questions and Comments

Goal of the Advanced Septic System Nitrogen Sensor Challenge

Identify, test, and verify the performance of <u>low-cost nitrogen sensor</u> <u>packages</u> which can measure and monitor the performance of advanced nitrogen removal septic systems

- > Approximately 360,000 onsite sewage disposal system
- ▶ 209,000 systems in priority areas
- Approximately 252,530 pre-date requirement for septic tank

* From "SUFFOLK COUNTY'S RECLAIM OUR WATER INITIATIVE, USEPA WEBINAR, MARCH 21, 2018

Stakeholders' Roles and Responsibilities

Organization	Role
EPA	Project Initiator
Battelle	Principal Contractor and Technical Verification Expert
VerifiGlobal	Subcontractor to Battelle and Independent Verification Body
Massachusetts Alternative Septic System Test Center (MASSTC)	Testing Organization
Barnstable County Dept. of Health and Environment (BCDHE) Laboratory	Analytical Laboratory
Sensor Developers	Testing and Verification Applicants
Technical Panel	Advisors
The Nature Conservancy	EPA Partner and Fundraiser for the Sensor Order

Technical Panel Members

Name	Affiliation	Expertise
George Heufelder	Massachusetts Alternative Septic System Test Center (MASSTC)	Advanced septic system testing and research
José Amador	University of Rhode Island (URI), Lab. of Soil Ecology and Microbiology	Soil science, microbial ecology, biogeochemistry, soil microbiology
George Loomis	URI, New England Onsite Wastewater Training Center	Septic system siting, design, O&M, and research
Brian Pellerin	U.S. Geological Survey	Water quality in-situ sensors and data collection platforms; soil science and runoff
Justin Jobin	Suffolk County Dept. of Health	Public Health Engineer, Regulator, Innovative and Alternative Onsite Wastewater Treatment Systems
Tom Wilson	Stony Brook University	Nutrient sensors, methods development, quality assurance, environmental applications
Hal Walker *	University of Massachusetts	Civil Engineering, with a focus on innovative onsite wastewater treatment systems
Mario Tamburri	University of Maryland Center for Environmental Science	Testing of sensor technologies
Christopher Clapp	The Nature Conservancy	Onsite wastewater treatment systems
Jim Bell	National Onsite Wastewater Recycling Association (NOWRA)	Process Engineer; wastewater treatment system design
Julius Enriquez	EPA	Analytical chemist; Environmental Technology Verification
lan Dombroski	EPA	Water and wastewater treatment processes; aquatic chemistry
Brian Dudley	Massachusetts Dept. of Environmental Protection	Wastewater management

* In transition; need to confirm continued participation

www.VerifiGlobal.com

BATTELLE

Purpose of the Test/Quality Assurance Plan (T/QAP)

- Documents the technology performance test procedure and quality assurance aspects of the project
- Outlines the procedures the project will use to ensure that samples, data, and subsequent reports are of high enough quality to meet project objectives
- Compliant with ISO 14034 Environmental Technology Verification (ETV) Standard
- Posted on VerifiGlobal Website

J	est/OA Plan for the Nitrogen Sensor Challenge, Revision 1 une 4, 2018	
1	CONTRACT NO. EP-C-16-014 Fask Order 01, Technical Deliverable 1-06	
F	Revision 1	
1	Test/Quality Assurance Plan (T/QAP) for Phase	÷
	I of the Advanced Septic System Nitrogen	
0	Sensor Challenge	
	Dranarad hv	
E	Battelle	
5	505 King Avenue	
f	or	
	J.S. Environmental Protection Agency Office of Research and Development	
F	Revision 1, June 4, 2018	
	ATTELLE June 4. 2018 Page	e i

Overview of the Massachusetts Alternative Septic System Test Center (MASSTC)

- Provides third-party independent testing of advanced onsite treatment technologies and other devices
- Operating since 1999 by the Barnstable County Dept. of Health and Environment
- Located next to a wastewater treatment plant that serves military and jail facilities.
- One wastewater line is intercepted and the flow is divided into 21 testing locations.
- Runs in accordance with conditions required by NSF Standards 40 (Residential Onsite System) and 245 (Nitrogen Reduction)
- Samples taken daily to the Barnstable County Water Quality Laboratory

Sensor Test Cell

Requirements of Sensors

Table A-2. Logistical Requirements of the Sensors

Sensor Attribute	Requirement
Size of Sensor	Overall dimensions no larger than 6" x 6" x 20", where the immersed portion of the device is no more than 6" x 6" x 6^{1}
Attachment of Sensor to Test Cell	Attached to the side (side thickness: ~1/4")
Power Supply	UL-listed direct current (DC) requiring no more than 3 amps at 120 volts
Data Output	Capable of collecting and retaining time stamped nitrogen test data for download
Interference	Sensors may not discharge into or in any other way contaminate the test cell contents ²

¹ External electronics accompanying the sensor can be up to 12" x 12" x 12".

² Incidental microscale contamination such as leaching from an antifouling coating or corrosion of a sacrificial anode will be permitted.

Experimental Design: Preliminary No-Risk Screening Test (1st week of 1-month study) – T/QAP Table B-1

Test Day	Day of Week	1st Test Date (2018)	2 nd Test Date (2019)	Test	Phase	Test Fluid	Sample taken at hourly intervals	Total # of analyses (NH4, NO3, TOC, TN)
0	Mon-Tues	10/1 and 10/2	1/7 and 1/8	Vendor set-up and calibration	Off-line	None		
1	Wed	10/3	1/9	Accuracy/	Off-line	TW	1	4
				Precision/ Range	Off-line	TW + Low Std	3	12
					Off-line	TW + Med Std	3	12
					Off-line	TW + High Std	1	4
2	Thu	10/4	1/10	Accuracy/ Precision	On-line	TS	3	12
				in matrix	Off-line	TS + Low Std	3	12
3	Fri	10/5	1/11	Alarm	On-line	PE	1	4
6	Mon	10/8	1/14	Accuracy following alarm	On-line	TS	1	4
7	Tues	10/9	1/15	Accuracy/	Off-line	TW	1	4
				Precision/ drift at 7	Off-line	TW + Low Std	3	12
				days	Off-line	TW + Med Std	3	12
					Off-line	TW + High Std	1	4
7 Day Total							24	96

Experimental Design: Preliminary No-Risk Screening Test (Remainder of 1-Month Study) – T/QAP Table B-1

Test Day	Day of Week	1st Test Date (2018)	2 nd Test Date (2019)	Test	Phase	Test Fluid	Sample taken at hourly intervals	Total # of analyses (NH4, NO3, TOC, TN)
8	Wed	10/10	1/16	Accuracy/ Precision/ Drift in matrix	On-line	TS	3	12
					Off-line	TS + Low Std	3	12
15	Wed	10/17	1/23	Accuracy/ Precision/ Drift in matrix	On-line	TS	3	12
					Off-line	TS + Low Std	3	12
22	Wed	10/24	1/30	Accuracy/ Precision/ Drift in matrix	On-line	TS	3	12
					Off-line	TS + Low Std	3	12
23	Thu	10/25	1/31	Power Failure (8-hours)	Off-line	TS		
24	Fri	10/26	2/1	Accuracy after power restoration	On-line	TS	1	4
29	Wed	10/31	2/6	Accuracy/ Precision/ Drift	On-line	TS	3	12
				in matrix	On-line	TS + Low Std	3	12
30	Thu	11/1	2/7	Accuracy /Precision/	Off-line	TW	1	4
				Lineanty/ Kange	Off-line	TW + Low Std	3	12
					Off-line	TW + Med Std	3	12
					Off-line	TW + High Std	1	4
31	Fri	11/2	2/8	Demobilization				
1 Month Total							57	228

Experimental Design: Test Procedures

- Off-line: flow-through septic fluid plumbing will be valved off
 - Alternatively introduced tap water, low standard, medium standard, and high standard test fluids
 - Test fluids: tap water spiked with low, medium, and high concentrations of:
 - Nitrate solution (KNO₃ preserved with chloroform): 1-15 mg N/L; 10-40 mg N/L; 30-60 mg N/L
 - Ammonia solution (NH₄Cl): 10-15 mg N/L; 10-40 mg N/L; 30-60 mg N/L
 - Organic nitrogen (C₅H₄NCOOH): 10-20 mg N/L; 15-40 mg N/L; 30-60 mg N/L
 - Matrix Spike of OWTS treated sewage effluent spiked with low standard

Experimental Design: Test Procedures (cont.)

- On-line: flow-through valves will be opened and used to deliver effluent to the cell
 - Tested using OWTS treated sewage effluent and primary treatment only effluent (to simulate OWTS failure)
- After fluids or effluents are added, sensor test cell is mixed for at least 1 hour and a time-stamped sample taken.

Experimental Design: Sampling Methods

- Samples will be collected using ISCO[™] portable liquid samplers, which use a peristaltic pump
- Field measurements of pH, dissolved oxygen, and temperature will be performed on the test fluid immediately before a fluid change, 1 hour after a test fluid change and whenever a sample is taken
- Field parameters will be monitored using a YSI 556 Multi Probe Sensor or equivalent
- Samples will be collected on the hour
- Samples will be immediately transferred to laboratory in prepreserved bottles appropriate for the analyses and stored refrigerated until delivered for analysis

Performance Goals for Moving to the Field Performance Test T/QAP Table A-3

Attribute	Performance Goals to Determine Field Performance Test Invitation
Parameter	Measures • NH_4^+ and $NO_3^- \underline{or}$ • NH_4^+ , NO_3^- , and TOC \underline{or} • TN
Data Management	Internal (local) sensor system data logger successfully collects time stamped data for the screen test
Applicability & Accessibility	Meets test size limits and performs under screen test environmental conditions
Maintenance	No more than one servicing during the preliminary screening test
Accuracy	Within 40% of true value
Precision	≤40% RSD
Range	2-60 mg N/L 2-60 mg/L TOC
Deployment	High frequency (at least hourly) measurement for the duration of the test

Experimental Design: Field Performance Test (6 months; Month 3 of 6) – T/QAP Table B-2

Test Day	Day of Week/ Date (2019)	Test	Phase	Test Fluid	Sample taken at hourly intervals	Total # of analyses (NH4, NO3, TOC, TN)
1	Tues	Accuracy/ Precision/ Drift in	On-line	TS3	3	12
	7/16	matrix	Off-line	TS3 + Low Std	3	12
2-14	7/17 – 7/29		On-line	TS3		
15	Tues	Accuracy/ Drift in matrix	On-line	TS3	1	4
	7/30					
16-28	7/31 – 8/12		On-line	TS3		
29	Tues	Accuracy/ Precision/ Drift in	On-line	TS3	3	12
	8/13	matrix	On-line	TS3 + Low Std	3	12
30	Wed	Accuracy/ Precision/ Range	Off-line	TW	1	4
	0/1/		Off-line	TW + Low Std	3	12
	0/14		Off-line	TW + Med Std	3	12
			Off-line	TW + High Std	1	4
31	Thur		On-line	Switch to TSX		
	8/15					
Month 3 Total					21	84

Overall
Performance
Goals of
Sensors

T/QAP Table A-1

AttributeAttribute DescriptionMinimumAlmost IdealIdealParameterWhat is being measuredNO3, NH4+NO3, NH4+, TOCTotal nitrogen (TN)2Installation PricePrice to the homeowner to install\$1,500\$1,250\$1,000Data ManagementAbility to record and transmit data (i.e., telemetry) for real-time access by practitioners, regulators, and interested stakeholdersRecord and automatically transmit data to designated server or cloudRecord and automatically transmit data to designated server or cloudRecord and automatically transmit data to designated server or cloudApplicability & Accessibility Sensor SystemApplicability of sensor(s) to various innovative/alternative system designs and ease of and maintenanceLocated in-situ to performance information on the OWTS; must be accessible for maintenanceLocated in-situ to OWTS; must be accessible for maintenanceLocated in-situ to performance information on the oWTS; must be accessible for maintenanceNo more thanFrequency of Sensor SystemHow often the sensor(s) need toNo more thanNo more thanNo more than		Attribute Departmetics	Performance Goals			
ParameterWhat is being measuredNO3, NH4+NO3, NH4+, TOCTotal nitrogen (TN)2Installation PricePrice to the homeowner to install\$1,500\$1,250\$1,000Data ManagementAbility to record and transmit data (i.e., telemetry) for real-time access by practitioners, regulators, and interested stakeholdersRecord and automatically transmit data to designated server or cloudRecord and automatically transmit data to designated server or cloudRecord and automatically transmit data to designated server or cloudRecord and automatically transmit data to designated server or cloudLocated in-situ to provide performance information on the OWTS; must be accessible for maintenanceLocated in-situ to provide performance information on the OWTS; must be accessible for maintenanceMO3, NH4+, TOCTotal nitrogen (TN)2Price to the homeowner to installNo more thanNo more thanNo more than	Attribute	Attribute Description	Minimum	Almost Ideal	Ideal	
Installation PricePrice to the homeowner to install\$1,500\$1,250\$1,000Data ManagementAbility to record and transmit data (i.e., telemetry) for real-time access by practitioners, regulators, and interested stakeholdersRecord and automatically transmit data to designated server or cloudRecord and automatically transmit data to designated server or cloudRecord and automatically transmit data to designated server or cloudApplicability & AccessibilityApplicability of sensor(s) to various innovative/alternative system designs and ease of access to OWTS for installation and maintenanceLocated in-situ to provide performance information on the OWTS; must be accessible for maintenanceLocated in-situ to provide performance information on the OWTS; must be accessible for maintenanceNo more thanNo more than	Parameter	What is being measured	NO ₃ ⁻ , NH ₄ +	NO ₃ ⁻ , NH ₄ ⁺ , TOC	Total nitrogen (TN) ²	
Data ManagementAbility to record and transmit data (i.e., telemetry) for real-time access by practitioners, regulators, and interested 	Installation Price	Price to the homeowner to install	\$1,500	\$1,250	\$1,000	
Applicability & AccessibilityApplicability of sensor(s) to various innovative/alternative system designs and ease of access to OWTS for installation and maintenanceLocated in-situ to provide performance information on the OWTS; must be accessible for maintenanceLocated in-situ to provide performance oWTS; must be accessible for maintenanceFrequency of Sensor SystemHow often the sensor(s) need toNo more thanNo more thanNo more than	Data Management	Ability to record and transmit data (i.e., telemetry) for real-time access by practitioners, regulators, and interested stakeholders	Record and automatically transmit data to designated server or cloud	Record and automatically transmit data to designated server or cloud	Record and automatically transmit data to designated server or cloud	
Frequency of Sensor System How often the sensor(s) need to No more than No more than No more than	Applicability & Accessibility	Applicability of sensor(s) to various innovative/alternative system designs and ease of access to OWTS for installation and maintenance	Located in-situ to provide performance information on the OWTS; must be accessible for maintenance	Located in-situ to provide performance information on the OWTS; must be accessible for maintenance	Located in-situ to provide performance information on the OWTS; must be accessible for maintenance	
Maintenance be maintained quarterly semi-annually annually	Frequency of Sensor System Maintenance	How often the sensor(s) need to be maintained	No more than quarterly	No more than semi-annually	No more than annually	
Accuracy of sensor measurements to the true measurement within 20% of true value ³ Within 20% of true value ³	Accuracy	Accuracy of sensor measurements to the true measurement	Within 20% of true value ³	Within 20% of true value ³	Within 20% of true value ³	
PrecisionRepeatability of sensor measurements≤30% RSD≤20-30% RSD≤20% RSD	Precision	Repeatability of sensor measurements	≤30% RSD	≤20-30% RSD	≤20% RSD	
Range ⁴ Range of the detection 2-60 mg N/L 2-60 mg N/L 2-60 mg N/L 2-60 mg/L TOC	Range ⁴	Range of the detection	2-60 mg N/L	2-60 mg N/L 2-60 mg/L TOC	2-60 mg N/L	
Sensor Operating Temperature RangeTemperature range in which the sensor can operate4° C to 35° C4° C to 35° C4° C to 35° C	Sensor Operating Temperature Range	Temperature range in which the sensor can operate	4° C to 35° C	4° C to 35° C	4° C to 35° C	
Deployment Period of deployment Continuous Continuous	Deployment	Period of deployment	Continuous	Continuous	Continuous	
System LifetimeExpected life of sensor5 years5 to 10 years10 years	System Lifetime	Expected life of sensor	5 years	5 to 10 years	10 years	

Verification and ISO 14034

- After the 6-month test, sensor developers will have the option to proceed with obtaining a Verification Report and Statement.
- Verification provides credible, reliable, and independent verification of a technology's performance.
 - Factual Approach
 - Transparency and Credibility
- ISO 14034: international consensus based on a structured procedure to verify performance
- Verification Plan:
 - Required by ISO 14034 ETV standard
 - Provides clarity and guidance on the verification process
 - Provides guidelines for reviewing and verifying the data and other information supporting a technology performance claim
 - Describes the verification process specific to the technology and the performance to be verified

Flowchart of Upcoming Activities and Timeline of Challenge

Testing Application Available on <u>VerifiGlobal</u> website

Application for Advanced Septic System Nitrogen Sensor Challenge Performance Testing

Contents

Preface		3
Part A –	Applicant Information	5
A-1.	Contact information	5
A-2.	Technology ownership and patent information	5
A-3.	Disclosure of potential conflicts of interest	6
Part B –	Understanding the Advanced Septic System Nitrogen Sensor Challenge	7
B-1.	Nitrogen Sensor Challenge performance goals	7
B-2.	Performance testing and other requirements in T/QAP	7
B-3.	Roles and responsibilities of primary organizations	7
Part C –	Sensor Technology Description and Functionality	8
C-1.	Description of the sensor technology	8
C-2.	Additional information	9
C-3.	Statement of Confidential and Proprietary Information	10
Annex 1	 List of supporting documentation submitted with this application 	12

* Developers who previously submitted applications need to confirm by email that they are attending the 1-month No-Risk Test and there are no changes to their application by the Application Due Date

Download: <u>http://www.verifiglobal.com/~/media/Files/Verifiglobal/Septic-Sensor-2018/Testing-Application-Revised_20180615.ashx?la=da</u>

Questions and Comments?

Please Raise Hand for Your Phone Line to be Unmuted or Add your Question/Comment in the Q&A Box

Amy Dindal, Battelle (561) 345-3151 sensorchallenge@battelle.org

